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Abstract

This paper presents a method of calculating sharp bounds on the average treat-

ment effect using linear programming under identifying assumptions commonly

used in the literature. This new method provides a sensitivity analysis of the

identifying assumptions and missing data in an application regarding the effect

of parent’s schooling on children’s schooling. Even a mild departure from iden-

tifying assumptions may substantially widen the bounds on average treatment

effects. Allowing for a small fraction of the data to be missing also has a large

impact on the results.

Keywords: Partial identification; Bounds; Average treatment effect, Sensitivity

analysis.

1 Introduction and Literature Review

The recent literature on the average effect of parent’s schooling on children’s schooling

appears inconclusive. Identification strategies based on twins, adoptees or instrumen-

tal variables lead to results that differ in size and statistical significance in terms of
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the average treatment effect and that lead to conflicting policy recommendations on

educational reform. An attempt to address this problem was made in de Haan (2011),

who studied the nonparametric bounds on the average treatment effect and relied on

weaker nonparametric assumptions that have clear economic interpretations. Nev-

ertheless, these assumptions may and should be challenged. This study discusses

the validity and the importance of these assumptions. Moreover, this paper presents

a method that allows some assumptions to be relaxed and an examination of how

fragile or robust the reported bounds are to some mild violations of these assump-

tions. This paper also looks at how missing data may affect the results, and it imposes

no structure on the missingness mechanism. Knowing what drives the results, and

which assumptions are important, may sharpen the discussion about the underlying

identifying assumptions, and also that about the economic problem at hand.

The contribution of this paper is twofold. First, this paper presents a flexible way

of calculating the sharp bounds on the average treatment effect using a linear pro-

gram. If all the variables are discrete, it is often practical to achieve identification by

conducting a search of the set of joint probability distributions of the observed and

unobserved variables. Second, this paper uses the linear programming method to

compute the bounds on the average treatment effect when some or all of the identi-

fying assumptions are relaxed, also allowing for the presence of missing data, in the

context of the effect of parents’ schooling on children’s schooling. The linear pro-

gramming formulation helps to clarify why one presumably irrelevant identifying

assumption becomes important once another assumption is relaxed, and therefore,

the two assumptions work as substitutes for each other.

There are two opposing explanations of how a parent’s schooling affects a child’s

schooling. One relates to causation and the other to selection. Either the parents

change during their education process (and this changes the way that they approach

the education of their children) or the child’s education merely reflects the trans-

mission of the high-ability genes from his or her parents. An understanding of the

intergenerational transmission of education has very important policy consequences.

First, policy makers care about the return on investment to schooling. If the link be-

tween parents’ schooling and children’s schooling is causal, the beneficial spillover

effect has to be taken into account when devising an educational policy. Second, if
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the effect is purely related to the transmission of genes, then the inequality in oppor-

tunities may simply be a consequence of the distribution of high-ability genes, and

inequality-reducing policy is unlikely to be beneficial.

There are three main identifying strategies in the literature for estimating the causal

effect of parents’ education on children’s education, as presented in a comprehensive

overview in de Haan (2011).

The first approach is based on twins data in Behrman and Rosenzweig (2002, 2005)

and Antonovics and Goldberger (2005). Children of identical twins should not differ

much in the unobservable genetic endowments that they inherit from their parents,

and this helps to remove an important source of correlation between parents’ and

children’s schooling. This approach assumes that any differences other than genetic

between the schooling levels of identical twins are exogenous.

The second method is based on adopted children (Björklund et al., 2006), where

there clearly is no genetic link between the parents and the adopted children. This

method assumes that the way the parents raise their children is unrelated to their

schooling level.

The last approach is based on an instrumental variable. The strategy is to find a

variable that provides a source of variation in parents’ schooling that is unrelated to

children’s schooling. Black et al. (2005) use a school reform in Norway that changed

the number of compulsory years of education from seven to nine. Chevalier (2004) use

a law that changed the minimum school leaving age in the 1970s in Britain. Oreopou-

los et al. (2006) also use the timing of the compulsory-schooling law changes as an

instrument for completed parents’ education. College availability is used as an instru-

ment for maternal education in Currie and Moretti (2003) for US data. Carneiro et al.

(2013) instruments maternal educational attainment with schooling cost during the

mother’s adolescence. Maurin and McNally (2008) is based on the series of events in

May 1968 that led to the lowering of thresholds in the education system and enabled

students to remain longer in the higher education system. Validity of the results from

these papers hinges upon the validity and relevance of the instruments in use and

may be challenged. It is also known that instrumental variable models only estimate

the average treatment effect for a subpopulation of individuals (LATE of Imbens and

Angrist (1994)).
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The results from all these analyses are mixed. They differ in the size and statisti-

cal significance of the potential effect of the intergenerational transmission of human

capital. The analysis in Holmlund et al. (2011) compares the three different iden-

tification strategies using Swedish data and finds similar patterns to the previous

literature. They conclude that the differences follow from the identification, not from

the different data sources. These findings stress the importance of the careful inspec-

tion of the identification strategy. As a solution to the diverging results, the analysis

in de Haan (2011) studies the bounds on the average treatment effect rather than

a point-identified model, and the analysis is based on weaker identifying assump-

tions.1 This paper will discuss the validity and the importance of these assumptions.

The analysis will consider the sensitivity of the results to some mild deviations from

the identifying assumptions and to the missing data, and why the sensitivity analysis

is relevant.

This paper also contributes to the literature on bounds analysis advocated by Man-

ski (1990, 1995, 1997, 2003, 2007, 2008) by providing a way to conduct a sensitivity

analysis. This paper uses the linear programming identification framework presented

in Laffers (2013a), which is based on Galichon and Henry (2009). Not only is it pos-

sible to determine which assumptions are important and drive the results but also

the linear programming formulation helps to quantify how sensitive the results are.

Note that there are other papers that consider partially identified models using linear

programming; most notably, Balke and Pearl (1997, 1994), Honore and Tamer (2006),

Manski (2007), Chiburis (2010) and Freyberger and Horowitz (2012). The growing em-

pirical literature that bounds rather than point identifies the average treatment effects

includes [TO BE ADDED].

Section 2 introduces the setup and notation, and how an identification problem

can be captured within a linear programming framework. Section 3 presents data

and results, and a sensitivity analysis on the effect of mothers’ schooling on children’s

schooling follows in Section 4. Section 5 concludes.

1One may argue that these assumptions are not weaker, they are just different. “Weaker” means
that these assumptions are not strong enough to deliver point identification.
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2 Method and Identifying Assumptions

2.1 Notation

Following the notation of Manski (1990), child j from population J has a specific re-

sponse function yj(.) that maps the schooling of parent t ∈ T (a treatment) to the

child’s schooling yj(t) ∈ Y (an outcome). For every child, we observe the schooling of

his or her parent zj (a realized treatment), schooling yj ≡ yj(zj) (a realized outcome), and

other parent’s (or grandparent’s) schooling vj ∈ V (a monotone instrument), but we do

not observe the child’s schooling yj(t) for parents’ schooling t 6= zj (a counterfactual

outcome). The data reveal the probability distribution P(y, z, v) (realized outcomes,

realized treatments and instruments), yet the probability distribution of the coun-

terfactual potential outcomes P(y(t1), . . . , y(tk)) remains unknown.2 The goal of the

analysis is to uncover some features of the unobserved probability distribution of

counterfactual outcomes P(y(t1), . . . , y(tk)). The feature of interest may be an expec-

tation of the child’s schooling if his or her parents’ schooling is equal to t (E[y(t)]), or

it may be the average treatment effect of the change of parents’ schooling from s to t

on the child’s schooling (∆(s, t) = E[y(t)]− E[y(s)]).

Under exogenous selection, the average treatment response to treatment t (E[y(t)])

is point identified, but this assumption is often not plausible, as discussed later. De-

pending on the strength of the maintained identifying assumptions, the expectation

of children’s schooling with parents’ education equal to t may be set rather than point

identified. There may exist an interval of values for E[y(t)] so that all the values in

this interval are compatible with the observed probability distribution P(y, z, v) and

with the identifying assumptions.

2.2 Method

The method of obtaining the bounds for average treatment effects follows in this sub-

section. For a given set of assumptions, instead of analytically deriving the bounds,

we translate all the assumptions into restrictions on the joint probability distribu-

tion of the unobserved component (y(t1), y(t2), ..., y(tm)) and the observed compo-
2Formally, the population forms a probability space (I,F ,P), where the population of individuals

I is the sample space, F is a set of events and P is a probability measure. Hence, the only source of
randomness is the choice of individual. The individual’s behavior is deterministic.
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nent (y, z, v). The joint probability distribution carries complete information about

the probabilistic behavior of all the variables in the model; there is nothing more that

could possibly be learned.

If the outcome is a child’s college attendance, and the treatment is the college

attendance of a parent, so that it takes two different values (0 - no college, 1 - college),

and we are interested in identifying the probability that a child will obtain a college

degree if his or her parent has a college education (E[y(1)]), we will search in the

space of probability distributions of (y(0), y(1), y, z, v) that are compatible with the

observed probabilities of (y, z, v), that satisfy all the identifying assumptions, and that

minimize (maximize) E[y(1)], which would give the lower (upper) bound. If both the

assumptions and the feature of interest are linear in the joint probability distribution

(y(0), y(1), y, z, v), then finding a lower or upper bound corresponds to solving one

linear program.

The approach of the presented identification scheme follows that of Galichon and

Henry (2009) and Ekeland et al. (2010), which was further extended in Laffers (2013a).

The linear programming method presented in this paper offers flexible identifi-

cation. It is easy to add, remove or change assumptions. This paper will use this

method to explore how sensitive the bounds are to some mild violations of the iden-

tifying assumptions.

The following subsections discuss how different identifying assumptions translate

into restrictions on the joint probability distribution (y(0), y(1), y, z, v) in the light of

the following specific example from de Haan (2011).

• yi ∈ Y = {0, 1} - child’s college (0 - no college, 1 - college).

• zi ∈ Z = {0, 1} - mother’s (father’s) college (0 - no college, 1 - college).

• vi ∈ V = {1, 2, 3, 4} - other parent’s (grandparent’s) schooling level (high school

or less (≤ 12 years), some college (13–15 years), bachelor’s degree (16 years),

master’s degree or more ( ≥ 17 years)).

The aim is to learn about the average treatment effect of an increase in mother’s

college attendance on a child’s college attendance (∆(0, 1) = E[y(1)]− E[y(0)]).

6



Bounding Average Treatment Effects using Linear Programming

2.3 Identifying assumptions

This subsection explains how the linear program whose extremes are the bounds on

the ATE is created. The presentation of identifying assumptions begins with a discus-

sion of how the unobserved component (y(0), y(1)) must be linked to the observed

component (y, z, v), and it is called the correct specification. The marginal distribu-

tion of the joint probability distribution of (y(0), y(1), y, z, v) must be the probability

distribution of the observed component, and this is called compatibility with ob-

served probabilities. Furthermore, the monotone treatment response, the monotone

treatment selection, the conditional monotone treatment selection and the mono-

tone instrumental variable assumptions are presented and explained. The figures

associated with these assumptions elucidate how they translate into restrictions on

the joint probability distribution (y(0), y(1), y, z, v).

Correct Specification

The observed component (y, z, v) has to be compatible with the unobserved com-

ponent (y(0), y(1)); that is, they are linked by ∀j : zj = t =⇒ yj(t) = yj. If

this assumption fails, it means that either the child’s schooling level or the mother’s

schooling level is not correctly measured or that child j’s schooling is not determined

by mother’s education.3

Figure 1 depicts the support of the joint probability distribution of (y(0), y(1), y, z, v)

∈ Y3×T×V. Every point in the figure represents a subpopulation of individuals. The

circle denotes children with a college degree (y = 1), with a college-educated mother

(z = 1), and with a grandparent with a high school education (v = 1). The unobserved

counterfactual outcomes for these children are y(0) = 1 and y(1) = 1. The observed

component (y = 1, z = 1, v = 1) implies that y(1) = 1, which is compatible with the

counterfactual outcomes. For a child that belongs to the subpopulation denoted by

a triangle, the observed component (y = 0, z = 1, v = 1) implies that y(1) = 0. At

the same time, the unobserved counterfactual outcomes are y(0) = 0 and y(1) = 1,

and therefore, not compatible with the observed component. There must be no such

3The assumption that outcome is a deterministic function of a treatment is intrinsic in the potential
outcome framework of Rubin (1974).
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children, and the probability of the point (0, 1, 0, 1, 1) must be equal to zero. Figure 2

shows all the points that can be assigned nonzero probabilities.

Compatibility with Observed Probabilities

The joint probability distribution of (y(0), y(1), y, z, v) must be compatible with the

observed probabilities of (y, z, v). In the data, 39.6% of the children do not have

college education (y = 0), their mother has a college degree (z = 1), and their father

has a high school education (v = 1) so that the probabilities in the column of (0, 1, 1)

sum to 0.396 as depicted in Figure 3.

Monotone Treatment Response

There seems to be a consensus that a child’s schooling does not decrease with mother’s

schooling. The monotone treatment response (MTR) assumption (Manski, 1997) in-

terprets this statement such that for every child, the schooling level is an increasing

function of mother’s schooling, specifically ∀j, t2 ≥ t1 : yj(t2) ≥ yj(t1). The MTR

assumption is a strong assumption and guarantees that the average treatment effect

is nonnegative.

The MTR assumption rules out all the rows of unobservables for which y(1) ≥ y(0)

does not hold (that is if (y(0), y(1)) = (1, 0)) as shown in Figure 4. Given the MTR

assumption, there must exist no children who would obtain a college degree if their

mother had not, and who would not finish college if their mother had finished college.

Monotone Treatment Selection

The assumption of monotone treatment selection (MTS) (Manski and Pepper, 2000)

provides another interpretation of how a child’s schooling increases with mother’s

schooling. Instead of assuming the selection bias away by imposing exogenous treat-

ment selection (∀t1, t2 : E[y(t)|z = t1] = E[y(t)|z = t2]) that delivers point identi-

fication, the MTS assumption restricts the direction of the selection bias.4 The MTS

assumption states that for a fixed potential mother’s college attendance, children with

observed college-educated parents have a weakly higher probability of graduating

4Ordinary least squares regression analysis assumes ETS, and it point identifies the average potential
outcome: E[y(t)] = E[y(t)|z = t]P(z = t) + E[y(t)|z 6= t]P(z 6= t) = E[y(t)|z = t].
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from college. That is, the probability that a child with a college-educated mother

obtains a college degree (E[y(1)|z = 1]) is higher than the potential probability of a

child with a mother without a college degree if (counterfactually) this mother had a

college education (E[y(1)|z = 0]). Moreover, the probability that a child with a less-

educated mother finishes college (E[y(0)|z = 0]) is not as high as it would be for a

child with a more-educated mother if (counterfactually) this mother does not have

a college education (E[y(0)|z = 1]). The differences in these probabilities may stem

from the fact that higher-educated parents tend to have higher abilities, and these can

be transmitted to their children, and that these parents with higher abilities create a

more stimulating environment for their children. Formally, the MTS assumption is

∀t2 ≥ t1 : E[y(t)|z = t2] ≥ E[y(t)|z = t1].

The MTS assumption restricts the space of the joint probability distribution func-

tions of (y(0), y(1), y, z, v) to those that are compatible with the corresponding set of

linear constraints. Figure 5 shows that the probability of graduating from a college if

the mother’s school attainment is equal to t conditional on her having a college de-

gree (E[y(t)|z = 1], which is calculated using the probabilities in solid rectangles) is

greater than or equal to the probability conditional on her not having a college degree

(E[y(t)|z = 0], which is calculated using the probabilities in dashed rectangles). The

MTS assumption states that given a mother’s schooling, any difference in unobserved

characteristics between college-educated and non-college-educated mothers does not

make a child’s probability of graduating from a college lower than that of children

with higher-educated mothers.

Conditional Monotone Treatment Selection

The conditional monotone treatment selection (cMTS) assumption, formally ∀i, t2 ≥
t1 : E[y(t)|z = t2, v = i] ≥ E[y(t)|z = t1, v = i], also states that a child’s potential

probability of getting into college increases with the mother’s education but condi-

tional on (and hence regardless of) the father’s (or grandparent’s) schooling level. The

father’s (or grandparent’s) education is, therefore, restricted to have no impact on the

direction of the selection bias due to mother’s education.
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Restricting the space of the joint probability distribution functions is similar to the

MTS assumption, with the conditioning on events [z = t, v = i] instead of [z = t].

Figure 6 illustrates the effect of the cMTS assumption for a subpopulation with v = 1.

The difference between the MTS and the cMTS assumption is explained in Laffers

(2013c). The distinction is similar to whether or not to include father’s education into

a regression as an explanatory variable as discussed in Holmlund et al. (2011). The

inclusion (similar to the cMTS assumption) would imply that the effect of mother’s

schooling is net of assortative mating effects. On the other hand, not including fa-

ther’s schooling as an explanatory variable (similar to the MTS assumption) means

capturing both direct effects of mother’s education and indirect effects of assortative

mating. As was pointed out in Laffers (2013c), when considering higher-educated

mothers that “married down” to less-educated men, we have to consider any ob-

served or unobserved factors that made these mothers self-select into such marriages.

These mothers might have compensated for unobserved low ability, or the cost of

finding a partner might have been high, which is true especially for older women

(Lichter, 1990), and children of older women have lower cognitive skills on average

(Zybert et al., 1978).

Monotone Instrumental Variable

The monotone instrumental variable (MIV) assumption (Manski and Pepper, 2000) is

a weakened version of the instrumental variable assumption (∀i1, i2 : E[y(t)|v = i1] =

E[y(t)|v = i2]). It ensures that a child’s mean potential schooling is weakly increasing

in its grandparent’s schooling. The MTS assumption is, in fact, a special case of the

MIV assumption.

The restrictions on (y(0), y(1), y, z, v) implied by the MIV assumption work in a

similar way as for MTS as depicted in Figure 7. Given the mother’s college attainment,

a child’s probability of graduating from college is greater for children with higher-

educated grandparents.

The average treatment effect is a linear function of the joint probability distribu-

tion of (y(0), y(1), y, z, v). To find the upper and lower bounds on ATE, we conduct

a search in the joint probability distributions that maximizes and minimizes the aver-

age treatment effect under linear identifying constraints, which is a linear program.
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The resulting bounds on ATE are sharp by construction, and the identifying assump-

tions translate one-to-one to restrictions on the joint probability distribution; there-

fore, there is no information gain or loss. If there is no joint probability distribution

that satisfies the constraints imposed by the identifying assumptions and is compat-

ible with the data, then the linear program has no feasible solution, and the model

can be refuted. The linear program that leads to the upper bound on ATE of an in-

crease in mother’s college education on the probability that the child finishes college

is depicted in Figure 8, and the joint probability distribution that maximizes the ATE

under the MTR+cMTS+MIV assumption is shown in Figure 9. Lemma 1 shows that if

the identification problem takes the form of a linear program, then the identified set

is an interval between the lower and upper bound.5 The average treatment effect is a

linear function of the joint probability distribution of (y(0), y(1), y, z, v).

Lemma 1. The identified set for the ATE is an interval.

Proof. Let p denote the probability vector of the observed variables. Let Π(p) de-

note the set of all joint probability distributions of the observed and unobserved

components that are compatible with p and with the identifying assumptions, and

let ATE(π) be the average treatment effect when the joint probability distribution

is π. Furthermore, let ub(p) ≡ maxπ∈Π(p) ATE(π) be the upper bound, and let

lb(p) ≡ maxπ∈Π(p) ATE(π) be the lower bound on ATE under the set of identify-

ing assumptions.

Consider a nontrivial case where lb(p) and ub(p) exist and lb(p) 6= ub(p). It is suf-

ficient to show that ∀a ∈ (lb(p), ub(p)) : ∃π ∈ Π(p) : ATE(π) = a. For every a, there

must exist γ so that a = γlb(p) + (1− γ)ub(p). Let πub = arg maxπ∈Π(p) ATE(π) and

πlb = arg minπ∈Π(p) ATE(π) denote the joint probability distributions that maximize

and minimize the ATE, respectively. For πa = γπub + (1− γ)πlb, it must hold that

πa ∈ Π(p), because Π(p) is defined as a set of vectors that satisfy a finite number

of linear equalities and inequalities. Finally, ATE(πa) = ATE(γπub + (1− γ)πlb) =

γATE(πub) + (1 − γ)ATE(πlb) = a because ATE(π) is a linear function, and this

completes the proof.

The identified interval is finite, because the feasible set is bounded.
5The proof is very similar to that in Freyberger and Horowitz (2012).
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Manski (1990, 1995, 2003) study the bounds on E[y(t)] and ∆(s, t) under various

combinations of these assumptions (apart from cMTS), and de Haan (2011) explains

these assumptions in great detail in the context of the presented schooling application.

3 Data and Results

3.1 Data

The Wisconsin Longitudinal Study (WLS) involves a random sample of 10317 high

school graduates in Wisconsin in 1957.6 WLS also collects information from parents,

spouses, and siblings of the original graduates. Similarly to de Haan (2011), this

paper uses the data from the most recent surveys (2004: original respondents or their

parents, 2005: siblings, 2006: spouses) and restricts the sample to the parents that

have children from their first marriage, because spouses are not linked to children.

Children that might still be at school (1.5%) are eliminated from the sample. Overall,

the data consist of information on 21545 children.

3.2 Results

This paper employs the 90% confidence sets based on the bias-corrected bootstrap

method of Imbens and Manski (2004), which considers the situation where the aim

is to cover the unknown parameter with a fixed probability asymptotically.7 The

confidence sets are based on 500 bootstrap replications. Different statistical inference

schemes, when the identified set follows from a linear programming formulation, are

compared in Laffers (2013b). There is no clear winner, but the method that is used

here performed well in most scenarios.

Our discussion of the results begin with the bounds on the effect of an increase in

a mother’s (father’s) education on the probability that the child has a college degree.

Table 1 presents the bounds for two different monotone instruments: other parent’s

and grandparent’s schooling level, under different sets of identifying assumptions.

The no-assumption bounds are not very informative, and the length of the identified

6Available at http://www.ssc.wisc.edu/wlsresearch/.
7The confidence sets that cover the whole identified set asymptotically are generally larger and may

be preferable for a policy maker concerned with robust decisions as is argued in Henry and Onatski
(2012).
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interval is equal to one. The MTR assumption only affects the lower bound and sets

it equal to zero with the exception that the effect of a father’s attendance at college

increases when the grandparent’s schooling level is used as the monotone instrument,

but the lower bound is not significantly different from zero under the 90% confidence

level. The MTS assumption reduces the upper bound from 64.1% to 36.5% for the

mother’s college education and from 68.1% to 39.3% for the father’s college education.

The cMTS is much stronger for an increase in the mother’s college attendance than

for an increase in the father’s, and it reduces the upper bound on the probability that

the child obtains a college degree to 21.4% compared with 37.2% for the father’s. The

MIV only slightly affects the lower bound for the father’s college attendance and has

no effect on the upper bound. The monotone instrument affects the upper bound

indirectly, via conditioning when the cMTS assumption is assumed. None of the sets

of assumptions yields a lower bound significantly different from zero.

Table 2 shows the bounds on the effect of a parent’s college degree on a child’s

years of finished schooling. No assumption bounds are not informative. The results

show a similar pattern for both mother’s and father’s college as treatments and other

parent’s or grandparent’s schooling level as monotone instruments. The MTR as-

sumption increases the lower bound to zero. The MTS assumption reduces the upper

bound from 10.8 years to 1.8 years when mother’s college is a treatment and from

11.6 years to 1.9 years for father’s college. The MIV assumption affects the upper

bound only in connection with the cMTS assumption and if grandparent’s schooling

is used as the monotone instrument. Other parent’s schooling level has greater iden-

tifying power than grandparent’s schooling, and the resulting bounds are narrower.

Finally, under the MTR+cMTS+MIV assumption, the effect of mother’s education on

child’s years of completed schooling is between zero and 1.08 years or 1.52 years,

respectively, when father’s and grandparent’s schooling level is used as the mono-

tone instrument. The effect of father’s college degree increases child’s schooling by

0 to 1.43 years if mother’s education is used as the MIV and 0.008 years (three days)

to 1.7 years with grandparent’s schooling level as the MIV. The lower bound is not

statistically significant.

13



Bounding Average Treatment Effects using Linear Programming

4 Sensitivity Analysis

This section studies the sensitivity of the results to relaxed identifying assumptions.

The flexibility of the linear programming identification framework allows this in a

straightforward manner. The identifying assumptions are relaxed in the following

ways.

• Mismeasurement of Outcomes or Treatments (MOT):

P[zj = t⇒ yj = yj(t)] ≥ 1− αMOT.

• Relaxed monotone treatment response (rMTR):

P[t2 ≥ t1 ⇒ yj(t2) ≥ yj(t1)] ≥ 1− αMTR.

• Relaxed monotone treatment selection (rcMTS):

∀z2 ≥ z1 : E[y(t)|z = z1]− E[y(t)|z = z2] ≤ αcMTS.

• Relaxed monotone instrumental variable (rMIV):

∀v2 ≥ v1 : E[y(t)|v = v1]− E[y(t)|v = v2] ≤ αMIV .

• Missing data (MISS): at most αMISS-fraction of the sample is not observed, and

nothing is assumed about the nature of the missingness.

Mismeasurement of outcomes or treatments (MOT) says that for αMOT fraction

of the population, observed outcome yi may not be equal to the outcome of the actual

treatment zi, either because yi or zi is mismeasured or because individual i’s outcome

is not a deterministic function of the treatment. As the data were collected mostly

via phone interviews, it is reasonable to expect that some entries were not recorded

correctly, although the probability of mismeasurement is likely to be low. The joint

distribution that maximizes the upper bound on the ATE of mother’s college degree

on child’s college completion under the MTR+cMTS+MIV assumption with the MOT

relaxed by αMOT = 0.001 is shown in Figure 10.

The assumption of relaxed monotone treatment response (rMTR) states that αMTR

proportion of the population is allowed to have the outcome function that is not mono-

tone in the treatment. The assumption that children’s education is weakly increasing

in mother’s education is consistent with a wide range of studies. Behrman and Rosen-

zweig (2002) suggest that one possible channel that works in the other direction is
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that a more educated woman spends less time with her children.8 The results in the

literature deal with the average response to mother’s schooling; however, it is not un-

reasonable to think of a small proportion of children whose schooling would not be

increasing in mother’s schooling. Figure 11 shows how relaxing the MTR assumption

by αMTR = 0.01 allows up to 1% of children to respond negatively to the treatment:

mother’s college degree.

Relaxed conditional monotone treatment selection (rcMTS) says that the differ-

ence in mean potential outcomes between subpopulations with lower and higher ob-

served treatments cannot be larger than δcMTS when conditioning on a value of the

monotone instrument. An argument that goes against this assumption is that the

outcome (child’s college degree) only reflects the benefits and does not consider the

cost of finishing college for the mother. A mother’s college degree is an investment.

If the cost of studying is very high, it may be optimal for the future mother to give

up college education, and she may eventually earn more and be able to support the

child’s education better.

Similarly, relaxed monotone instrumental variable (rMIV) states that the differ-

ence in mean potential outcomes between subpopulations with lower and higher in-

strument values cannot be larger than δMIV .

So far, all the relaxed assumptions are straightforward modifications of the orig-

inal assumptions and still linear in the joint probability distribution. This is not the

case when considering the missing data. Even though the survey’s responsiveness’

rates are very good, around 90%, the fact that the data are not missing-at-random

may lead to potential problems. Hauser (2005) argues that there is a systematic non-

responsiveness in the studied dataset and that the missingness mechanism therefore

cannot be ignored. We remain agnostic about the actual process that drives the miss-

ingness. Let P denote the space of all probability distributions of observed variables.

If no assumptions are made about the missing data, the probability distribution of the

missing component pMISS can be any element in P . The data reveals p̂n ∈ P , where n

is the sample size. Let αMISS be the fraction of the missing part, and let PMISS be the

8This analysis was challenged by Antonovics and Goldberger (2005), who claim that their results
are driven by a specific data coding. In a reply, Behrman and Rosenzweig (2005) argue that their story
is supported by an additional data source.
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space of all probability vectors that are convex combinations of the data component

p̂n and arbitrary probability vector of the missing component pMISS.

PMISS = {(1− αMISS) p̂n + αMISS pMISS|pMISS ∈ P} (1)

To find bounds on ATE under the MISS assumption, it is necessary to calculate the

minimum and the maximum ATE across all probability vectors in PMISS. The linear

program takes the vector of observables p from PMISS as fixed. The outer loop is an

optimization in PMISS, which is a convex set. Note that there are different ways to

model the missing data. Here the interpretation is that αMISS proportion of the data is

missing. No assumptions are made about the missing subpopulation separately; the

identifying assumptions must hold for the whole population.9 The following lemma

states that the identified set is an interval under the MISS assumption.

Lemma 2. Suppose that the matrices and the vector that define the equalities and the inequal-

ities in Π(p) are continuous in p element-wise. Then the identified set for the ATE under the

missing data assumption is an interval.

Proof. This proof uses the notation from the proof of Lemma 1. Further define pmax =

arg maxp∈PMISS ub(p) and pmin = arg minp∈PMISS lb(p). It is sufficient to show that

∀a ∈ (lb(pmin), ub(pmax)) ∃p ∈ PMISS : ∃π ∈ Π(p) : ATE(p) = a.

Firstly, note that PMISS defined in equation 1 is a convex set. Consider any p1, p2 ∈
PMISS. From 1, there exist pM

1 and pM
2 such that p1 = (1− αMISS) p̂n + αMISS pM

1 and

p2 = (1− αMISS) p̂n + αMISS pM
2 . For any 0 < λ < 1, it must hold that λp1 + (1−

λ)p2 = (1− αMISS) p̂n + αMISS(λpM
1 + (1− λ)pM

2 ) ∈ PMISS as λpM
1 + (1− λ)pM

2 ∈ P .

Secondly, Theorem 1.1 in Martin (1975) shows that ub(p) (and lb(p)) is a continu-

ous function of p on PMISS.

Finally, by virtue of the Intermediate Value Theorem (Munkres, 2000), the im-

age set ub(PMISS) must contain the interval (ub( p̂n), ub(pmax)), and the image set

lb(PMISS) must contain (lb(pmin), lb( p̂n)), and this, together with Lemma 1, com-

pletes the proof.

9Note that the nature of some identifying assumptions (e.g., the MTR assumption) are such that
they must also hold for every subpopulation.
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All sets of assumptions used in this paper satisfy the assumption of the continuity

of the equalities and of the inequalities that define the set of feasible joint probability

distributions of (y(0), y(1), y, z, v).

We will now look more closely at the effect of the increase in mother’s college

education on the probability that the child has a college degree with father’s school-

ing level as a monotone instrument for the sake of simplicity. The results with child’s

years of schooling as the treatment are qualitatively similar, and the average treatment

effect has an appealing interpretation of a probability increase that a child has a col-

lege degree. Figure 12 illustrates the sensitivity of the bounds to different deviations

from the MOT, MTR, cMTS and MIV assumptions.

Relaxing the (MOT) leads to the lower bound under the MTR, and the MTR+cMTS

+MIV assumption remains at zero. The lower bound under the MIV assumption is

linear in the relaxation parameter αMOT. The upper bound under the benchmark

MTR+cMTS+MIV assumption jumps from 21% to 35% when 1% of the outcomes

are allowed to be mismeasured. The shape of the upper bound curve is convex.

The already large upper bounds under the MTR assumption and under the MIV

assumption do not respond to αMOT as steeply. It seems that the stronger assumptions

make the results more fragile to mild deviation from MOT.

The MTR assumption does not affect the upper bounds on ATE at all. The lower

bound shows the same linear pattern for all studied models. This is not surprising

because allowing 1% of children to respond negatively to mother’s college increase

cannot lead to an ATE smaller than 1%. Deviation from the cMTS assumption only

affects the upper bound on ATE and in an exactly linear way.

The MIV assumption itself has weak identifying power and only affects the upper

bound. If the potential probability that a child gets a college degree is not greater

than 2% for children with less-educated fathers (αMIV = 0.02), then this assumption

is irrelevant, and the upper bound increases to the no-assumption bound. The upper

MTR+cMTS+MIV bound is not affected at all.

Figure 13 shows how the results are sensitive to missing data. The lower bound

stays at zero if the MTR assumption is made. Under the MIV assumption, the lower

bound is linear in the proportion of missing observations. The upper bound under

the MTR+MIV assumption and under the MIV assumption is similar and is linearly
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increasing in αMISS. The upper bound under the benchmark MTR+cMTS+MIV as-

sumption gets less sensitive with increases in the amount of missing data, and the

shape of this sensitivity curve is convex as it was for the MOT assumption.

So far, this analysis has considered the different relaxations one by one. Two

different scenarios illuminate how the identifying assumptions interact. In the first,

“optimistic”, scenario, the assumptions are relaxed slightly. It is assumed that 1% of

children may respond to mother’s college negatively, that for up to 0.1% of children,

the data on mother’s or child’s college attendance may be mismeasured and also that

the potential probability of a child’s getting a college degree cannot be greater by

more than 1% for a child with a lower-educated mother (cMTS) and father (MIV).

Such relaxations lead to bounds on the effect of mother’s college on child’s college

from −1% to 24.36% as shown in Table 3. Adding the assumption that 1% of the data

are missing shifts the upper bound to 28.62%. It is apparent that the missing data

assumption is the most important determinant of the change in the upper bound.

Assuming that 1% of the data are missing, the additional relaxations only change the

upper bound from 27.31% to 28.62%.

Considering the more realistic (“pessimistic”) scenario with 5% of children poten-

tially responding negatively to mother’s college increase, 1% of mismeasured data,

5% relaxation of the cMTS assumption and the MIV assumption, the effect is between

−5% and 44.1%, so that the upper bound more than doubles from 21.44%, which is

the upper bound for the benchmark specification. Adding that up to 10% of the data

may be missing, which is the actual rate of survey responsiveness, the upper bound

jumps to 53.27%.

This paragraph looks more closely at the last interesting result that the MIV does

not affect the bounds if the cMTS assumption is made. The linear program formu-

lation allows us to inspect which assumptions are most important by examining the

values of the Lagrange multipliers corresponding to the identifying assumptions. Fig-

ure 14 shows the Lagrange multipliers that correspond to the linear restrictions that

the cMTS assumption and the MIV assumption induce on the joint probability distri-

bution. The cMTS multipliers sum to one, so these numbers also show the relative

importance.10 The cMTS with v = 1—that is, for the subpopulation of children with

10Figure 12 and Table 4 show that relaxation of αcMTS translates to the upper bound one by one.
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high-school educated fathers—drives the result most, and it accounts for 58.08% of

the change in the upper bound. In the situation where the cMTS assumption holds

only for children with fathers that have at least some college education (v ≥ 2), the

MIV assumption actually matters. Table 4 shows that the MIV assumption has a big

impact on the upper bound by shrinking it from 46.71% to 27.54%. The Lagrange

multipliers provide some insight into the source of the identifying power. Figure 15

indicates that the MIV restriction, which says that the potential probability of get-

ting a college degree for a father with some college (v = 2) is greater than that of a

child with a high-school educated father (v = 1) if their mother had a college degree

(E[y(1)|v = 2] ≥ E[y(1)|v = 1]), now takes the role of the omitted cMTS for children

with less-educated fathers with the value of Lagrange multiplier of 0.582. Therefore,

not only is it possible to see that the MIV is now important but also this highlights

which part of the MIV assumption is relevant. The reason for this is that once the

cMTS is not assumed for children with lower-educated fathers (v = 1), nothing is

assumed about this large proportion of data, 58.21%, which is exactly the value of the

Lagrange multiplier for the part of the MIV assumption that binds. Therefore, in this

situation, the cMTS and the MIV assumptions are substitutes for each other.

5 Conclusion

de Haan (2011) provides a novel attempt to address an identification problem in the

context of intergenerational transmission of education. The minimal identifying as-

sumptions that she imposes do not deliver point identification, yet the bounds on the

treatment effects are still informative. This paper has presented a method for finding

sharp bounds on the average treatment effect via linear programming and has then

used this method to show how sensitive the bounds are to mild violations of the iden-

tifying assumptions. The sensitivity analysis provides insights into the determinants

of the identification. The bounds on ATE are very sensitive to missing data and pos-

sible mismeasurement of treatments or outcomes. Realistic relaxations of identifying

assumptions double the upper bound on the effect of mother’s college increase on the

probability that a child finishes college.
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The findings in this paper stress the importance of discussing the identification as-

sumptions in great detail. Special care should be exercised with the assumptions with

the greatest identifying power, and this paper has presented a method of identifying

and analyzing them.
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Figure 1: The joint support of the observed (y, z, v) and the unobserved component
(y(0), y(1)). The large circle corresponds to the population with the observed y = 1,
z = 1, v = 1, and the unobserved outcomes y(0) = 1 and y(1) = 1. The triangle
stands for the individuals with y = 0, z = 1, v = 1, but y(0) = 0 and y(1) = 1 so the
unobserved component is not compatible with the observed component.
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Figure 2: The joint support of the observed (y, z, v) and the unobserved component
(y(0), y(1)). The grey points correspond to populations for which the unobserved
component is incompatible with the observed component.
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Figure 3: An example of the joint probability distribution of (y(0), y(1), y, z, t). We
observe one of its marginal distributions from the data (numbers on the horizontal
axis).
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Figure 4: The joint support of the observed (y, z, v) and the unobserved component
(y(0), y(1)). The MTR assumption rules out points for which y(0) ≤ y(1) is violated.
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Figure 5: The joint support of the observed (y, z, v) and the unobserved component
(y(0), y(1)). The MTS assumption states that the expectation of y(t) based on the
conditional distribution of the solid region is greater than that based on the dashed
region.
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Figure 6: The joint support of the observed (y, z, v) and the unobserved component
(y(0), y(1)). The cMTS assumption states that the expectation of y(t) based on the
conditional distribution of the solid region is greater than that based on the dashed
region if we condition on v = 1.
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Figure 7: The joint support of the observed (y, z, v) and the unobserved component
(y(0), y(1)). The MIV assumption states that the expectation of y(t) based on the
conditional distribution of the solid region is greater than that based on the dashed
region.
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Bounds on the Effect of an Increase in the Mother’s (Father’s) College Education
on the Probability the Child has a College Degree

Outcome Child’s college
Treatment Mother’s college Father’s college
Instrument Father’s Grandparent’s Mother’s Grandparent’s

No Assumption
[-35.9%, 64.1%] [-35.9%, 64.1%] [-31.9%, 68.1%] [-31.9%, 68.1%]
(-36.5%, 64.7%) (-36.5%, 64.7%) (-32.6%, 68.7%) (-32.6%, 68.7%)

MTR
[0%, 64.1%] [0%, 64.1%] [0%, 68.1%] [0%, 68.1%]
(0%, 64.7%) (0%, 64.7%) (0%, 68.8%) (0%, 68.7%)

MTS
[-35.9%, 36.5%] [-35.9%, 36.5%] [-31.9%, 39.3%] [-31.9%, 39.3%]
(-36.5%, 37.9%) (-36.6%, 37.9%) (-32.6%, 40.6%) (-32.5%, 40.6%)

cMTS
[-35.9%, 21.4%] [-35.9%, 33.7%] [-31.9%, 30%] [-31.9%, 37.2%]
(-36.5%, 23.7%) (-36.5%, 35.4%) (-32.6%, 31.6%) (-32.5%, 38.7%)

MTR+MTS
[0%, 36.5%] [0%, 36.5%] [0%, 39.3%] [0%, 39.3%]
(-0%, 37.9%) (-0%, 37.9%) (0%, 40.6%) (-0%, 40.5%)

MTR+cMTS
[0%, 21.4%] [0%, 33.7%] [0%, 30%] [0%, 37.2%]
(0%, 23.7%) (0%, 35.3%) (0%, 31.7%) (0%, 38.6%)

MTR+MTS+MIV
[0%, 36.5%] [0%, 36.5%] [0%, 39.3%] [0.1%, 39.3%]
(0%, 37.9%) (-0.1%, 37.9%) (-0.1%, 40.7%) (-0.8%, 40.6%)

MTR+cMTS+MIV
[0%, 21.4%] [0%, 30.6%] [0%, 30%] [0.1%, 34.7%]
(0%, 23.6%) (-0.1%, 33.3%) (-0.1%, 31.7%) (-0.7%, 37.1%)

Sample size 16912 14614
90% confidence intervals in parentheses using the method of Imbens and Manski (2004)

Table 1: Bounds on the effect of an increase in the parent’s college education on the
probability that the child has a college degree under different identifying assump-
tions.

29



Bounding Average Treatment Effects using Linear Programming

Bounds on the Effect of an Increase in the Mother’s (Father’s) College Education
on the Years of Child’ schooling

Outcome Child’s years of schooling
Treatment Mother’s college Father’s college
Instrument Father’s Grandparent’s Mother’s Grandparent’s

No Assumption
[-12.164, 10.836] [-12.164, 10.836] [-11.387, 11.613] [-11.387, 11.613]
(-12.203, 10.874) (-12.204, 10.872) (-11.43, 11.656) (-11.43, 11.652)

MTR
[0, 10.836] [0, 10.836] [0, 11.613] [0, 11.613]
(0, 10.872) (0, 10.874) (0, 11.653) (0, 11.655)

MTS
[-12.164, 1.809] [-12.164, 1.809] [-11.387, 1.943] [-11.387, 1.943]
(-12.204, 1.881) (-12.203, 1.873) (-11.43, 2.004) (-11.432, 2.002)

cMTS
[-12.164, 1.088] [-12.164, 1.651] [-11.387, 1.437] [-11.387, 1.83]
(-12.204, 1.184) (-12.202, 1.723) (-11.429, 1.508) (-11.428, 1.892)

MTR+MTS
[-0, 1.809] [0, 1.809] [0, 1.943] [0, 1.943]
(-0, 1.875) (0, 1.87) (-0, 2.002) (-0.151, 2.003)

MTR+cMTS
[0, 1.088] [-0, 1.651] [-0, 1.437] [0, 1.83]
(-0, 1.185) (-0, 1.72) (-0, 1.513) (-0, 1.898)

MTR+MTS+MIV
[-0, 1.809] [-0, 1.809] [-0, 1.943] [0.008, 1.943]
(-0, 1.872) (-0.139, 1.872) (-0, 2.005) (-0.03, 2.007)

MTR+cMTS+MIV
[0, 1.088] [0, 1.523] [0, 1.437] [0.008, 1.702]

(-0.114, 1.185) (-0.111, 1.658) (-0.147, 1.509) (-0.202, 1.815)

Sample size 16912 14614
90% confidence intervals in parentheses using the method of Imbens and Manski (2004)

Table 2: Bounds on the effect of an increase in the parent’s college education on the
years of the child’s schooling under different identifying assumptions.
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maxπ

Average Treatment Effect︷ ︸︸ ︷[
0 1 0 1 0 1 0 1 0 0 0 0 0 0 0 0 1 0 1 0 1 0 1 0

]
× π

subject to

DATA








1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1




× π =




0.397

0.055

0.029

0.017

0.013

0.01

0.013

0.012

0.155

0.055

0.054

0.047

0.017

0.018

0.043

0.065








Observed

probabilities

cMTS








0 0 0 0 0 0 0 0 0 0 0 0 .03 0 0 0 0 −.55 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 .03 0 0 0 0 0 −.11 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 .06 0 0 0 0 0 0 −.08 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 .08 0 0 0 0 0 0 0 −.06

0 .03 0 0 0 0 0 0 0 0 0 0 .03 0 0 0 −.55 −.55 0 0 0 0 0 0

0 0 0 .03 0 0 0 0 0 0 0 0 0 .03 0 0 0 0 −.11 −.11 0 0 0 0

0 0 0 0 0 .06 0 0 0 0 0 0 0 0 .06 0 0 0 0 0 −.08 −.08 0 0

0 0 0 0 0 0 0 .08 0 0 0 0 0 0 0 .08 0 0 0 0 0 0 −.06 −.06




MIV








0 0 0 0 0 0 0 0 0 0 0 0 .13 −.58 0 0 0 .13 0 −.58 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 .13 −.13 0 0 0 0 .13 0 −.13 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 .14 −.13 0 0 0 0 0 .14 0 −.13

0 .13 0 −.58 0 0 0 0 0 0 0 0 .13 −.58 0 0 .13 .13 −.58 −.58 0 0 0 0

0 0 0 .13 0 −.13 0 0 0 0 0 0 0 .13 −.13 0 0 0 .13 .13 −.13 −.13 0 0

0 0 0 0 0 .14 0 −.13 0 0 0 0 0 0 .14 −.13 0 0 0 0 .14 .14 −.13 −.13




× π ≤




0

0

0

0

0

0

0

0







0

0

0

0

0

0




π ≥




0
...

0


,

π∗ =
[0.244 0.152 0.039 0.016 0.019 0.010 0.010 0.007 0.013 0.010 0.013 0.012 . . .

. . . 0.155 0.055 0.054 0.047 0.008 0.009 0.004 0.014 0.007 0.036 0.009 0.056]′.

1

Figure 8: This linear program searches in the space of the joint probability distribu-
tions assigned to all combinations of the observed component (y, z, v) and the unob-
served component (y(0), y(1)) that are compatible (∀i, t : zi = t → yi = yi(t)) and
satisfy the MTR assumption (as depicted in Figure 4). The space of the joint distri-
butions is further restricted to satisfy the cMTS assumption and the MIV assumption,
and to be compatible with the observed probabilities. The optimal solution π∗ maxi-
mizes the average treatment effect.
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0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0.1555 0.055 0.054 0.0465 0.0085 0.014 0.0365 0.056

Joint Distribution - Upper bound on ATE under MTR+cMTS+MIV = 0.2144
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d
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(0
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y
(1
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(0,1,4)
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(0,2,1)
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(1,1,1)
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0.017

(1,2,2)
0.018
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0.065

Observed and unobserved component are compatible
Observed and unobserved component are not compatible
Points ruled out by the MTR assumption

Figure 9: The joint probability distribution that maximizes the ATE of mother’s col-
lege increase on child’s probability of getting a college degree using other parent’s
schooling as a monotone instrumental variable under the MTR+cMTS+MIV assump-
tion. Numbers on the horizontal axis are probabilities of the observed variables.
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0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0.1555 0.055 0.054 0.0465 0.0085 0.014 0.0365 0.056

Joint Distribution - Upper bound on ATE (with αMOT = 0.001) = 0.23359
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Observed and unobserved component are compatible
Observed and unobserved component are not compatible
Points ruled out by the MTR assumption

Figure 10: The joint probability distribution that maximizes the ATE of mother’s
college increase on child’s probability of getting a college degree using other parent’s
schooling as a monotone instrumental variable. The MOT assumption is relaxed by
αMOT = 0.001. We can see that this probability was assigned to the point (0, 1, 0, 2, 1).
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0 0 0 0 0 0 0 0 0.01 0 0 0 0 0 0 0
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Joint Distribution - Lower bound on ATE (with αMTR = 0.01) = -0.01
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Points ruled out by the MTR assumption

Figure 11: The joint probability distribution that minimizes the ATE of mother’s col-
lege increase on child’s probability of getting a college degree using other parent’s
schooling as a monotone instrumental variable. The MTR assumption does not need
to hold for 1% of the children αMTR = 0.01. This 1% of children was assigned to the
point (1, 0, 1, 1, 1) and decreased the lower bound of ATE accordingly by 0.01.
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Bounds on Effect of Mother’s College Increase
on the Probability that the Child has a College Degree

MTR+cMTS+MIV
[Lower bound, Upper bound] = [0, 21.44%]

Confidence Set = (0, 23.74%)
Lower bound Upper bound

αMTR αMOT αcMTS αMIV αMISS
Optimistic 0.01 0.001 0.01 0.01 0.01

-1% 23.36% 22.44% 21.44% 27.31%
(-1.46%) (25.63%) (24.71%) (23.71%) ( 29.64%)

Pessimistic 0.05 0.01 0.05 0.05 0.10
-5% 35.66% 26.44% 21.44% 38.15%

(-5%) (37.74%) (28.71%) (23.71%) (40.67%)

Optimistic 0.01 0.001 0.01 0.01 0
[−1%, 24.36%]
(−1%, 26.63%)

0.01 0.001 0.01 0.01 0.01
[−1%, 28.62%]
(−1%, 29.66%)

Pessimistic 0.05 0.01 0.05 0.05 0
[−5%, 41.54%]
(−5%, 43.67%)

0.05 0.01 0.05 0.05 0.10
[−5%, 53.25%]
(−5%, 55.08%)

Note: Estimates are not bias corrected, n = 16912
90% confidence intervals in parentheses using the method of Imbens and Manski (2004)

Table 3: Sensitivity analysis of the bounds on the effect of mother’s college degree on
the probability that the child gets a college degree. Father’s education level was used
as a monotone instrumental variable.

Bounds on ATE
MTR + cMTS [0, 21.44%]

MTR + cMTS + MIV [0, 21.44%]

If cMTS holds for v ∈ {2, 3, 4} only:

Bounds on ATE
MTR + cMTS [0, 46.71%]

MTR + cMTS + MIV [0, 27.54%]

Table 4: Bounds on the effect of mother’s college increase on the probability that the
child has a college degree using father’s schooling level as a monotone instrument.
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Figure 13: Sensitivity of the bounds on the effect of mother’s college increase on prob-
ability change that child would graduate to missing data under different assumptions.

Binding constraints under MTR+cMTS+MIV and Lagrange multipliers:

cMTS





E[y(0)|z = 1, v = 1] ≥ E[y(0)|z = 0, v = 1] 0.0303
E[y(1)|z = 1, v = 1] ≥ E[y(1)|z = 0, v = 1] 0.5505
E[y(0)|z = 1, v = 2] ≥ E[y(0)|z = 0, v = 2] 0.0282
E[y(1)|z = 1, v = 2] ≥ E[y(1)|z = 0, v = 2] 0.1106
E[y(0)|z = 1, v = 3] ≥ E[y(0)|z = 0, v = 3] 0.0554
E[y(1)|z = 1, v = 3] ≥ E[y(1)|z = 0, v = 3] 0.0823
E[y(0)|z = 1, v = 4] ≥ E[y(0)|z = 0, v = 4] 0.0766
E[y(1)|z = 1, v = 4] ≥ E[y(1)|z = 0, v = 4] 0.0637

Nonbinding constraints:

MIV





E[y(0)|v = 2] ≥ E[y(0)|v = 1] 0
E[y(1)|v = 2] ≥ E[y(1)|v = 1] 0
E[y(0)|v = 3] ≥ E[y(0)|v = 2] 0
E[y(1)|v = 3] ≥ E[y(1)|v = 2] 0
E[y(0)|v = 4] ≥ E[y(0)|v = 3] 0
E[y(1)|v = 4] ≥ E[y(1)|v = 3] 0

Figure 14: Binding and nonbinding identifying constraints under the
MTR+cMTS+MIV assumption with corresponding Lagrange multipliers.
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Binding constraints under MTR+cMTS+MIV:
(cMTS for v ∈ {2, 3, 4}) and Lagrange multipliers

cMTS





E[y(0)|z = 1, v = 2] ≥ E[y(0)|z = 0, v = 2] 0.0282
E[y(1)|z = 1, v = 2] ≥ E[y(1)|z = 0, v = 2] 0.5768
E[y(0)|z = 1, v = 3] ≥ E[y(0)|z = 0, v = 3] 0.0554
E[y(1)|z = 1, v = 3] ≥ E[y(1)|z = 0, v = 3] 0.0823
E[y(0)|z = 1, v = 4] ≥ E[y(0)|z = 0, v = 4] 0.0766
E[y(1)|z = 1, v = 4] ≥ E[y(1)|z = 0, v = 4] 0.0637

MIV E[y(1)|v = 2] ≥ E[y(1)|v = 1] 0.5821

Nonbinding constraints:

MIV





E[y(0)|v = 2] ≥ E[y(0)|v = 1] 0
E[y(1)|v = 2] ≥ E[y(1)|v = 1]
E[y(0)|v = 3] ≥ E[y(0)|v = 2] 0
E[y(1)|v = 3] ≥ E[y(1)|v = 2] 0
E[y(0)|v = 4] ≥ E[y(0)|v = 3] 0
E[y(1)|v = 4] ≥ E[y(1)|v = 3] 0

Figure 15: Binding and nonbinding identifying constraints under the
MTR+cMTS+MIV assumption (cMTS for v ∈ {2, 3, 4}) with corresponding La-
grange multipliers.
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